organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A second monoclinic polymorph of *N*-(pyrazin-2-yl)aniline

Zanariah Abdullah and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 23 September 2008; accepted 4 October 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.113; data-to-parameter ratio = 15.8.

The two aromatic rings in the title compound, $C_{10}H_9N_3$, are aligned at 23.4 (1)° and the bridging C–N–C angle is 128.9 (1)°. In the crystal structure, intermolecular N–H···N hydrogen bonds result in a chain motif, the repeat distance of which is half the *b* axial length of 8.8851 (3) Å.

Related literature

In the $P2_1/c$ modification, the aromatic rings are aligned at 15.2 (1)°, and the repeat distance of the helical chain is half the *b*-axial length of 7.8423 (3) Å; see: Wan Saffiee *et al.* (2008).

Experimental

Crystal data

$C_{10}H_9N_3$		a = 8.2194 (3)
$M_r = 171.20$		b = 8.8851 (3)
Monoclinic,	$P2_1/n$	c = 11.8395 (

```
\beta = 104.643 \ (2)^{\circ}

V = 836.56 \ (5) \ \text{Å}^{3}

Z = 4

Mo K\alpha radiation
```

Data collection

Bruker SMART APEX diffractometer Absorption correction: none 7621 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.113$ S = 1.031922 reflections 122 parameters

 Table 1

 Hydrogen-bond geometry (Å, °).

 $D - H \cdots A$ D - H $H \cdots A$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1 - H1 \cdots N3^i$	0.90 (2)	2.17 (2)	3.062 (2)	175 (2)
Symmetry code: (i)	$-x + \frac{5}{2}, y - \frac{1}{2}, -z$	$z + \frac{3}{2}$.		

 $\mu = 0.09 \text{ mm}^{-1}$

T = 100 (2) K

 $R_{\rm int} = 0.045$

refinement

 $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

 $0.25 \times 0.05 \times 0.03 \text{ mm}$

1922 independent reflections

1389 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

The authors thank the University of Malaya for supporting this study (grant Nos. FS 358/2008A and FA 067/2006A).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2124).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wan Saffiee, W. A. M., Idris, A., Abdullah, Z., Aiyub, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2105.

Westrip, S. P. (2008). publCIF. In preparation.

supplementary materials

Acta Cryst. (2008). E64, o2106 [doi:10.1107/S1600536808031954]

A second monoclinic polymorph of N-(pyrazin-2-yl)aniline

Z. Abdullah and S. W. Ng

Comment

The cell dimensions of the reported monoclinic $P2_1/c$ modification are: a = 10.0644 (3), b = 7.8423 (3), c = 10.8907 (3) Å; $\beta = 116.439$ (2)° (Wan Saffiee *et al.*, 2008). The cell dimensions of the present modification (Scheme I, Fig. 1), after transformation to the standard $P2_1/c$ setting, are: a = 8.2194 (3), b = 8.8851 (3), c = 12.5909 (4) Å, $\beta = 114.525$ (2)°.

Experimental

The P21/c modification of 2-pyrazinyl-N-aniline (0.10 g, 0.4 mmol), zinc acetate (0.09 g, 0.4 mmol) and water (18 ml) were

heated in a 23-ml Teflon-lined Parr bomb at 403 K for 2 days. The bomb was cooled to room temperature at 5 K min⁻¹. Several faint yellow prisms were picked out manually from the cool solution.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2U(C). The amino H-atom was located in a difference Fourier map, and was freely refined.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{10}H_9N_3$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

N-(pyrazin-2-yl)aniline

Crystal data
$C_{10}H_9N_3$
$M_r = 171.20$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 8.2194 (3) Å
b = 8.8851 (3) Å
c = 11.8395 (4) Å
$B = 104.643 \ (2)^{\circ}$

 $F_{000} = 360$ $D_x = 1.359 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1282 reflections $\theta = 2.7-26.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 (2) KPrism, pale yellow $V = 836.56 (5) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX diffractometer	1389 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.045$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 100(2) K	$\theta_{\min} = 2.7^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: none	$k = -11 \rightarrow 11$
7621 measured reflections	$l = -15 \rightarrow 14$
1922 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_o^2) + (0.0547P)^2 + 0.1331P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
1922 reflections	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
122 parameters	$\Delta \rho_{\rm min} = -0.22 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

 $0.25\times0.05\times0.03~mm$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	1.00115 (16)	0.42084 (14)	0.63143 (11)	0.0216 (3)
H1	1.103 (2)	0.377 (2)	0.6527 (15)	0.035 (5)*
N2	0.84988 (15)	0.63197 (14)	0.66840 (11)	0.0230 (3)
N3	1.15770 (16)	0.76478 (14)	0.78284 (11)	0.0228 (3)
C1	0.86787 (18)	0.33136 (16)	0.56827 (12)	0.0193 (3)
C2	0.89595 (19)	0.17682 (17)	0.56499 (13)	0.0254 (4)
H2	1.0021	0.1367	0.6049	0.030*
C3	0.7717 (2)	0.08147 (17)	0.50462 (14)	0.0264 (4)
Н3	0.7933	-0.0235	0.5030	0.032*
C4	0.61582 (19)	0.13750 (17)	0.44633 (13)	0.0232 (3)
H4	0.5296	0.0717	0.4058	0.028*
C5	0.58777 (19)	0.29106 (17)	0.44814 (13)	0.0222 (3)
Н5	0.4815	0.3305	0.4079	0.027*
C6	0.71238 (18)	0.38836 (16)	0.50783 (13)	0.0211 (3)
H6	0.6916	0.4936	0.5074	0.025*

supplementary materials

C7	0.99583 (18)	0.56191 (16)	0.67668 (13)	0.0192 (3)
C8	1.14967 (18)	0.63040 (16)	0.73478 (13)	0.0213 (3)
H8	1.2514	0.5772	0.7393	0.026*
C9	1.00948 (18)	0.83515 (18)	0.77382 (13)	0.0248 (4)
Н9	1.0085	0.9325	0.8069	0.030*
C10	0.8604 (2)	0.76892 (17)	0.71788 (14)	0.0254 (4)
H10	0.7592	0.8226	0.7139	0.030*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0144 (7)	0.0200 (7)	0.0276 (7)	0.0019 (5)	0.0003 (5)	-0.0014 (5)
N2	0.0173 (6)	0.0230 (7)	0.0272 (7)	0.0004 (5)	0.0027 (5)	-0.0036 (5)
N3	0.0195 (7)	0.0228 (7)	0.0251 (7)	-0.0033 (5)	0.0037 (5)	-0.0011 (5)
C1	0.0180 (7)	0.0205 (7)	0.0193 (7)	-0.0010 (6)	0.0048 (6)	-0.0009 (6)
C2	0.0217 (8)	0.0227 (8)	0.0289 (8)	0.0040 (6)	0.0012 (6)	0.0000 (6)
C3	0.0293 (9)	0.0176 (8)	0.0307 (9)	0.0005 (6)	0.0043 (7)	-0.0019 (6)
C4	0.0217 (8)	0.0233 (8)	0.0244 (8)	-0.0059 (6)	0.0053 (6)	-0.0035 (6)
C5	0.0173 (7)	0.0251 (8)	0.0229 (8)	0.0005 (6)	0.0026 (6)	-0.0006 (6)
C6	0.0195 (8)	0.0190 (7)	0.0237 (8)	0.0005 (6)	0.0031 (6)	-0.0011 (6)
C7	0.0175 (7)	0.0198 (7)	0.0194 (7)	0.0004 (6)	0.0030 (6)	0.0020 (6)
C8	0.0177 (7)	0.0224 (8)	0.0233 (8)	-0.0001 (6)	0.0041 (6)	0.0015 (6)
C9	0.0228 (8)	0.0220 (8)	0.0284 (8)	-0.0016 (6)	0.0047 (6)	-0.0049 (6)
C10	0.0202 (8)	0.0241 (8)	0.0307 (9)	0.0032 (6)	0.0043 (6)	-0.0041 (7)

Geometric parameters (Å, °)

N1—C7	1.3681 (19)	С3—Н3	0.9500
N1—C1	1.4061 (19)	C4—C5	1.385 (2)
N1—H1	0.897 (18)	C4—H4	0.9500
N2—C7	1.3330 (18)	C5—C6	1.389 (2)
N2	1.3438 (19)	С5—Н5	0.9500
N3—C8	1.3171 (19)	С6—Н6	0.9500
N3—C9	1.3494 (19)	С7—С8	1.415 (2)
C1—C6	1.393 (2)	С8—Н8	0.9500
C1—C2	1.395 (2)	C9—C10	1.370 (2)
С2—С3	1.379 (2)	С9—Н9	0.9500
C2—H2	0.9500	C10—H10	0.9500
C3—C4	1.385 (2)		
C7—N1—C1	128.94 (13)	C4—C5—H5	119.4
C7—N1—H1	114.0 (12)	С6—С5—Н5	119.4
C1—N1—H1	116.7 (11)	C5—C6—C1	119.86 (14)
C7—N2—C10	115.67 (13)	С5—С6—Н6	120.1
C8—N3—C9	116.12 (13)	С1—С6—Н6	120.1
C6—C1—C2	118.72 (13)	N2—C7—N1	121.09 (13)
C6—C1—N1	123.92 (13)	N2—C7—C8	120.79 (13)
C2—C1—N1	117.35 (13)	N1—C7—C8	118.11 (13)
C3—C2—C1	120.88 (14)	N3—C8—C7	122.74 (13)

supplementary materials

С3—С2—Н2	119.6	N3—C8—H8	118.6
С1—С2—Н2	119.6	С7—С8—Н8	118.6
C2—C3—C4	120.52 (14)	N3—C9—C10	121.23 (14)
С2—С3—Н3	119.7	N3—C9—H9	119.4
С4—С3—Н3	119.7	С10—С9—Н9	119.4
C5—C4—C3	118.88 (14)	N2-C10-C9	123.44 (14)
С5—С4—Н4	120.6	N2-C10-H10	118.3
С3—С4—Н4	120.6	С9—С10—Н10	118.3
C4—C5—C6	121.11 (14)		
C7—N1—C1—C6	21.9 (2)	C10-N2-C7-N1	178.88 (14)
C7—N1—C1—C2	-159.27 (15)	C10—N2—C7—C8	0.2 (2)
C6—C1—C2—C3	-1.0 (2)	C1—N1—C7—N2	2.9 (2)
N1—C1—C2—C3	-179.81 (14)	C1—N1—C7—C8	-178.36 (14)
C1—C2—C3—C4	-0.3 (2)	C9—N3—C8—C7	0.0 (2)
C2—C3—C4—C5	1.0 (2)	N2-C7-C8-N3	-0.2 (2)
C3—C4—C5—C6	-0.5 (2)	N1—C7—C8—N3	-178.92 (13)
C4—C5—C6—C1	-0.8 (2)	C8—N3—C9—C10	0.1 (2)
C2-C1-C6-C5	1.5 (2)	C7—N2—C10—C9	0.0 (2)
N1—C1—C6—C5	-179.75 (13)	N3—C9—C10—N2	-0.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1···N3 ⁱ	0.90 (2)	2.17 (2)	3.062 (2)	175 (2)
Symmetry codes: (i) $-x+5/2$, $y-1/2$, $-z+3/2$.				

